TMTH 204 FINAL EXAM FORMULA SHEET

CHAPTER 5: Graphs

slope
$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

equation
$$y = mx + b$$

CHAPTER 11: Determinants

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}, \qquad y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

$$y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

Third-Order Determinant:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1 - a_1 b_3 c_2 - a_2 b_1 c_3$$

Cramer's Rule for 3 by 3 system:

$$x = \frac{\begin{vmatrix} k_1 & b_1 & c_1 \\ k_2 & b_2 & c_2 \\ k_3 & b_3 & c_3 \end{vmatrix}}{\Lambda}$$

$$y = \frac{\begin{vmatrix} a_1 & k_1 & c_1 \\ a_2 & k_2 & c_2 \\ a_3 & k_3 & c_3 \end{vmatrix}}{\Lambda}$$

$$x = \frac{\begin{vmatrix} k_1 & b_1 & c_1 \\ k_2 & b_2 & c_2 \\ k_3 & b_3 & c_3 \end{vmatrix}}{\Delta}, \qquad y = \frac{\begin{vmatrix} a_1 & k_1 & c_1 \\ a_2 & k_2 & c_2 \\ a_3 & k_3 & c_3 \end{vmatrix}}{\Delta}, \qquad z = \frac{\begin{vmatrix} a_1 & b_1 & k_1 \\ a_2 & b_2 & k_2 \\ a_3 & b_3 & k_3 \end{vmatrix}}{\Delta}, \quad \text{where } \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$

CHAPTER 12: Matrices

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \begin{pmatrix} u & x \\ v & y \\ w & z \end{pmatrix} = \begin{pmatrix} au + bv + cw & ax + by + cz \\ du + ev + fw & dx + ey + fz \end{pmatrix}$$

$$AA^{-1} = A^{-1}A = I$$

Solution to system of equations
$$AX = B$$
 is $X = A^{-1}B$

$$AX = B$$

$$S X = A^{-1}I$$

CHAPTER 14: Quadratic Equations

Quadratic Formula If
$$ax^2 + bx + c = 0$$
 and $a \ne 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

CHAPTER 15: Oblique Triangles and Vectors

$$\sin \theta = \sin(180^{\circ} - \theta)$$
 $\cos \theta = \cos(360^{\circ} - \theta)$ $\tan \theta = \tan(180^{\circ} + \theta)$

Law of Sines
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Law of Cosines:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 or $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

$$c^2 = a^2 + b^2 - 2ab \cos C$$
 or $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

CHAPTER 17: Graphs of the Trigonometric Functions

Angle Conversions
$$1 \text{ rev} = 360^{\circ} = 2 \pi \text{ rad}$$

Sine Wave as a Function of Time: $y = a \sin(\omega t + \varphi)$

amplitude =
$$|a|$$
 angular velocity = ω period = $\frac{2\pi}{\omega}$

frequency =
$$\frac{\omega}{2\pi}$$
 phase angle = φ phase shift = $-\frac{\varphi}{\omega}$

Cosine and Sine Curves Related
$$\cos \theta = \sin(\theta + 90^{\circ})$$

Sinusoidals as Phasors:

$$a \sin(\omega t + \varphi)$$
 is identified with $a \angle \varphi$

$$a\cos(\omega t + \varphi)$$
 is identified with $a \angle (\varphi + 90^{\circ})$

Addition of a Sine Wave and a Cosine Wave:

$$A \sin \omega t + B \cos \omega t = R \sin(\omega t + \varphi)$$
 where $R = \sqrt{A^2 + B^2}$ and $\varphi = \arctan \frac{B}{A}$

CHAPTER 18: Trigonometric Identities and Equations

$$csc \theta = \frac{1}{\sin \theta}$$
 $sec \theta = \frac{1}{\cos \theta}$
 $cot \theta = \frac{1}{\tan \theta}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sin^2\theta + \cos^2\theta = 1 \qquad \tan^2\theta + 1 = \sec^2\theta \qquad 1 + \cot^2\theta = \csc^2\theta$$

Sum and Difference Identities:

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Double Angle Identities:

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\cos 2A = 1 - 2\sin^2 A$$

$$\cos 2A = 2\cos^2 A - 1$$

Function Values of Special Angles:

θ		$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3} \circ r \frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3} o r \frac{2}{\sqrt{3}}$	2
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} o r \frac{1}{\sqrt{2}}$	$\frac{\sqrt{2}}{2} o r \frac{1}{\sqrt{2}}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3} \circ r \frac{1}{\sqrt{3}}$	2	$\frac{2\sqrt{3}}{3} \circ r \frac{2}{\sqrt{3}}$

CHAPTER 21: Complex Numbers

The Imaginary Unit and its Powers $j=\sqrt{-1}$, $j^2=-1$, $j^3=-j$, $j^4=1$, $j^5=j$, ...

Complex Number in Rectangular Form a + jb real part = a, imaginary part = b

Complex Number in Polar Form $r \angle \theta$ magnitude = r, polar angle = θ

Polar to Rectangular Form $r \angle \theta = a + jb$, where $a = r \cos \theta$ and $b = r \sin \theta$

Rectangular to Polar Form $a + jb = \sqrt{a^2 + b^2} \angle \tan^{-1} \left(\frac{b}{a}\right)$

Complex Current, Voltage, and Impedance:

Given
$$i=I_{max}\sin(\omega t+\varphi)$$
, $I=I_{eff} \angle \varphi$, where $I_{eff}=\frac{I_{max}}{\sqrt{2}}$

Given
$$v=V_{max}\sin(\omega t+\varphi)$$
, $V=V_{eff}\,\angle\varphi$, where $V_{eff}=\frac{V_{max}}{\sqrt{2}}$

$$\mathbf{Z} = R + jX = \sqrt{R^2 + X^2} \angle \varphi$$
, where $X = X_L - X_C$ and $\varphi = \tan^{-1}\left(\frac{X}{R}\right)$

Ohm's Law for AC circuits V = ZI